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ABSTRACT
Foundational and scalable techniques for runtime safety
analysis of multithreaded programs are explored in this pa-
per. A technique based on vector clocks to extract the causal
dependency order on state updates from a running multi-
threaded program is presented, together with algorithms to
analyze a multithreaded computation against safety prop-
erties expressed using temporal logics. A prototype tool
implementing our techniques, is also presented, together
with examples where it can predict safety errors in multi-
threaded programs from successful executions of those pro-
grams. This tool is called Java MultiPathExplorer (JM-
PaX), and available for download on the web. To the best
of our knowledge, JMPaX is the first tool of its kind.
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1. INTRODUCTION
The purpose of this paper is to investigate foundational,

scalable techniques for runtime safety analysis of multi-
threaded programs, i.e., programs in which several execution
threads communicate with each other via shared variables
and synchronization points, as well as to introduce a pro-
totype tool, called Java MultiPathExplorer (JMPaX – see
Figure 1), based on our foundational techniques, which can
reveal errors in multithreaded programs that are hard or
impossible to detect otherwise. The user of JMPaX spec-
ifies safety properties of interest, using a past time tem-
poral logic, regarding the global state of a multithreaded
program, which is already assumed in compiled form, calls
an instrumentation script which automatically instruments
the executable multithreaded program to emit relevant state
update events to an external observer, and finally runs the
program on any JVM and analyzes the safety violation mes-
sages reported by the observer. A particularly appealing
aspect of our approach is that, despite the fact that a sin-
gle execution, or interleaving, of a multithreaded program
can be observed, a comprehensive analysis of all possible
executions is performed; a possible execution is any execu-
tion which does not violate the observed causal dependency
partial order on state update events. Thus, tools built on
our techniques, including JMPaX, have the ability to pre-
dict safety violation errors in multithreaded programs by
observing successful executions.

The work in this paper falls under the area recently called
runtime verification [11, 10], a major goal of which is to
combine testing and formal methods techniques. Testing
scales well, and is by far the most used technique in prac-
tice to validate software systems. By merging testing and
temporal logic specification, we aim to achieve the bene-
fits of both approaches, while avoiding some of the pitfalls
of ad hoc testing and the complexity of full-blown theorem
proving and model checking. Of course, there is a price to
be paid in order to obtain a scalable technique: the loss
of coverage. The suggested framework can only be used to
examine single execution traces, and therefore can not be
used to prove a system correct. However, a single execu-
tion trace typically contains much more information than
what appears at first sight. In this paper, we show how one
can analyze all the other multithreaded executions that are
hidden behind a particular observed execution. Our work
is based on the belief that software engineers are willing to
trade coverage for scalability, so our goals are to provide
tools that use formal methods techniques in a lightweight
manner, use unmodified programming languages or under-
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Figure 1: JMPaX Architecture

lying executional engines (such as JVMs), are completely
automatic, implement very efficient algorithms and eventu-
ally find many errors in programs. A longer term goal is to
explore the use of conformance with a formal specification
to achieve error recovery. The idea is that a predicted fail-
ure may trigger an error-avoidance or recovery action in the
monitored program.

The closest works in spirit to ours are NASA’s PathEx-
plorer (PaX) and its Java instance JPaX [10, 9], which is a
runtime verification system developed at NASA Ames, and
UPENN’s MaC and its instance Java MaC [14, 15]. It is
actually the latter’s limitations that motivated us to pursue
our current research. The major limitation of these systems
with regards to safety analysis is that they only analyze the
observed run. Therefore, they can only detect existing er-
rors in current executions; they do not have the ability to
predict possible errors from successful runs. To be more pre-
cise in our claim, let us consider a real-life example where
JMPaX was able to detect a violation of a safety property
from a single execution of the program. However, the likeli-
hood of detecting this bug only by monitoring the observed
run, as JPaX and Java-MAC do, is very low. The example
consists of a two threaded program to control the landing of
an airplane. It has three variables landing, approved, and
radio; their values are 1 when the plane is landing, landing
has been approved, and radio signal is live, and 0 otherwise.
The safety property that we want to verify is “If the plane
has started landing, then it is the case that landing has been
approved and since the approval the radio signal has never
been down.” As shown in Subsection 3.1, this property can
be formally written in our extension of past time linear tem-
poral logic as the formula

↑landing→ [approved, ↓radio)s.

The code snippet for a naive implementation of this control
program is given as follows:

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");

} else {
print("Landing not approved");

}
}

void askLandingApproval(){
if(radio==0) approved = 0;
else approved = 1;

}

void thread2(){
while(radio){checkRadio();} }

void checkRadio(){
randomly change value of radio;

}

The above code uses some dummy functions, namely
askLandingApproval and checkRadio, which can be imple-
mented in their entirety in a real scenario. The program
has a serious problem which cannot be detected easily from
a single run. The problem is as follows. Suppose the plane
has received approval for landing and just before it started
landing the radio signal went off. In this situation, the plane
must abort landing. But this situation will very rarely arise
in an execution: namely, when radio is set to 0 between the
approval of landing and the start of actual landing. So a
simple observer will not probably detect the bug. However,
note that even if the radio goes off after the landing has
started, JMPaX can still construct a possible run in which
radio goes off between landing and approval. Thus JMPaX
will be able to predict the safety violation from a single suc-
cessful execution of the program. This example shows the
power of our runtime verification technique as compared to
JPaX and Java-MaC.

Other related approaches include model checking [6], es-
pecially Java bytecode model checking [8], and debugging
of distributed systems. It is important to observe that, un-
like model checking where all possible code interleavings are
analyzed, in our approach to runtime safety analysis one
actually runs the program and extracts causal dependen-
cies among updates of the multithreaded program state, and
then analyzes all possible interleavings that do not violate
the causal dependency. At the expense of a lower coverage,
our approach analyzes a significantly lower amount of thread
interleavings than a typical model checker would normally
do, so it scales up better. The safety properties that we
analyze are more general than the simpler state predicates
that are typically considered in the literature on debugging
distributed systems (see for example [19, 4, 3]). We allow
any past time linear temporal logic formula built on state
predicates, so our safety properties can refer to the entire
past history of states. An important practical aspect of our
algorithm is that, despite the fact that there can be a po-
tentially exponential number of runs (in the length of the
runs), they can all be analyzed in parallel, by generating
and traversing the computation lattice extracted from the
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observed multithreaded execution on a level-by-level basis.
The relevant information regarding the previous levels can
be encoded compactly, so those levels do not need to be
stored, thus allowing the memory to be reused.

We can think of at least three major contributions of the
work presented in this paper. First, we nontrivially extend
the runtime safety analysis capabilities of systems like JPaX
and Java Mac, by providing the ability to predict safety er-
rors from successful executions; we are not aware of any
other efforts in this direction. Second, we underlie the foun-
dations of relevant causality in multithreaded systems with
shared variables and synchronization points, which one can
use to instrument multithreaded programs to emit to exter-
nal observers a causal dependency partial relation on global
state updates via relevant events timestamped with appro-
priate vector clocks; this is done in Section 2, where, due to
its foundational aspect, all the proofs of the claimed results
are provided. Finally, a modular implementation of a pro-
totype runtime analysis system, JMPaX, is given, showing
that, despite their theoretical flavor, all the concepts pre-
sented in the paper are in fact quite practical and can lead
to new scalable verification tools.

2. RELEVANT CAUSALITY IN
MULTITHREADED SYSTEMS

We consider multithreaded systems in which several
threads communicate with each other via a set of shared
variables. The theme of this paper is to show how such a
system can be analyzed for safety by an external observer
that obtains relevant information about the system from
messages sent by the system after appropriate instrumenta-
tion. The safety formulae refer to sets of shared variables,
so these messages contain update information about those
variables. A crucial observation here is that some variable
updates can causally depend on others. For example, if a
thread writes a variable x and then another thread writes y
due to a statement y = x + 1, then the update of y causally
depends upon the update of x. In this section we present an
algorithm which, given an executing multithreaded system,
generates appropriate messages to be sent to an external
observer. The observer, in order to perform its more elabo-
rated safety analysis, extracts the state update information
from such messages together with the causality partial order
order among the updates.

Formally, given n threads p1, p2, ..., pn, a multithreaded
execution is abstracted as a sequence of events e1e2 . . . er,
each belonging to one of the n threads and being of type ei-
ther internal or read or write of a shared variable. We use ej

i

to represent the j-th event generated by thread pi since the
start of its execution. From now on in this section we assume
an arbitrary but fixed multithreaded execution. When the
process or the position of an event is not important then we
can refer to the event generically, such as e, e′, etc.; we may
write e ∈ pi when event e is generated by thread pi. Let S
be the set of shared variables. There is an immediate notion
of variable access precedence for each shared variable x ∈ S:
we say that e x-precedes e′, written e <x e′, if and only if
e and e′ are variable access events (reads or writes) to the
same variable x, and e “happens before” e′; this “happen-
before” relation can be easily realized by keeping a counter
for each shared variable which is increased by each access
to it. Let E be the set of all the events of a multithreaded

execution, and let ≺ be the partial order on E defined as
follows:

• ek
i ≺ el

i if k < l;

• e ≺ e′ if there is some x ∈ S such that e <x e′ and
atleast one of e, e′ is a write.

• e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ when it is not the case that e ≺ e′ or
e′ ≺ e. A partial order on events ≺ defined above is
called a multithreaded computation associated with the orig-
inal multithreaded execution. As shown in Subsection 3.3,
synchronization can be treated very elegantly by generating
appropriate read/write events, so that the notion of mul-
tithreaded computation as defined above is as general as
currently needed. Note that the original multithreaded ex-
ecution was used only to provide a total ordering on the
read/write accesses of each shared variable.1 A permuta-
tion of all the events e1, e2, ..., er which does not violate
the multithreaded computation is called a consistent multi-
threaded run, or simply, a multithreaded run.

Intuitively, e ≺ e′, read as e′ causally depends upon e, if
and only if e occurred before e′ in the given multithreaded
execution and a change of their order does not generate a
consistent multithreaded run. We argue that the notion of
multithreaded computation defined above is the weakest as-
sumption that an omniscient observer of the multithreaded
execution can make about the program. Intuitively, this is
because an external observer cannot disregard the order in
which the same variable is modified and used within the
observed execution, because this order can be part of the
intrinsic logic of the multithreaded program. However, mul-
tiple consecutive reads of the same variable can be permuted,
and the particular order observed in the given execution is
not critical; it can be, for example, a result of a particu-
lar thread scheduling algorithm. By allowing an observer to
analyze multithreaded computations rather than just multi-
threaded run, one gets the benefit of not only properly deal-
ing with potential reordering of delivered messages (for ex-
ample, due to using multiple channels in order to reduce the
monitoring overhead), but also of predicting errors from an-
alyzing successful executions, errors which can occur under
a different thread scheduling.

Not all the variable in S are needed to evaluate the safety
formula to be checked. To minimize number of messages
sent to an observer, and for technical reasons discussed later,
we consider a subset R ⊆ E of relevant events. Then we
define the R-relevant causality on E as the relation ⊳ :=≺
∩(R×R), so that e ⊳ e′ if and only if e, e′ ∈ R and e ≺ e′.
We provide a technique based on vector clocks [7, 17] that
correctly implements the relevant causality relation.

Let Vi be an n-dimensional vector of natural numbers for
thread pi, for each 1 ≤ i ≤ n, and let V a

x and V w
x be two

additional n-dimensional vectors for each shared variable x;
we call the former access vector clock and the latter write
vector clock. All the vector clocks are initialized to 0 at the
beginning of computation. For two n-dimensional vectors we
say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all 1 ≤ j ≤ n,
and we say that V < V ′ iff V ≤ V ′ and there is some
1 ≤ j ≤ n such that V [j] < V ′[j]; also, max{V, V ′} is

1One could have defined a multithreaded computation more
abstractly but less intuitively, by starting with a total order
<x on the subset of events accessing each shared variable x.
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the vector with max{V, V ′}[j] = max{V [j], V ′[j]} for each
1 ≤ j ≤ n. Whenever a thread pi with current vector clock
Vi processes event ek

i , the following vector clock algorithm
is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i]← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}

3. if ek
i is a write of a variable x then

V w
x ← V a

x ← Vi ← max{V a
x , Vi}

4. if ek
i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

Then the following crucial results hold:

Lemma 1. After event ek
i is processed by thread pi,

a. Vi[j] equals the number of relevant events of pj that
causally precede ek

i ; if j = i and ek
i is relevant then this

number also includes ek
i ;

b. V a
x [j] equals the number of relevant events of pj that

causally precede the most recent event that accessed (read
or wrote) x; if i = j and ek

i is a relevant read or write of
x event then this number also includes ek

i ;

c. V w
x [j] equals the number of relevant events of pj that

causally precede the most recent write event of x; if i = j
and ek

i is a relevant write of x then this number also in-
cludes ek

i .

Theorem 2. If 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages
sent by our algorithm, then e ⊳ e′ if and only if V [i] ≤ V ′[i].
If i and j are not given, then e ⊳ e′ if and only if V < V ′.

In a summary, the above theorem states that the vec-
tor clock algorithm correctly implements causality in multi-
threaded programs. The detailed proofs of the above results
are given in [18].

Consider what happens at the observer’s site. The ob-
server receives messages of the form 〈e, i, V 〉 in any possible
order. We let R denote the set of received relevant events,
which we simply call events in what follows. By using The-
orem 2, the observer can infer the causal dependency be-
tween the relevant events emitted by the multithreaded sys-
tem. Inspired by similar definitions at the multithreaded
system’s [2], we define the important notions of relevant
multithreaded computation and run as follows. A relevant
multithreaded computation, simply called multithreaded com-
putation from now on, is the partial order on events that the
observer can infer, which is nothing but the relation ⊳. A
relevant multithreaded run, also simply called multithreaded
run from now on, is any permutation of the received events
which does not violate the multithreaded computation. Our
purpose in this paper is to check safety requirements against
all (relevant) multithreaded runs of a multithreaded system.

We assume that the relevant events are only writes of
shared variables that appear in the safety formulae to be
monitored, and that these events contain a pair of the name
of the corresponding variable and the value which was writ-
ten to it. We call these variables relevant variables. Note
that events can change the state of the multithreaded sys-
tem as seen by the observer; this is formalized next. A
relevant program state, or simply a program state is a map

from relevant variables to concrete values. Any permutation
of events generates a sequence of program states in the ob-
vious way, however, not all permutations of events are valid
multithreaded runs. A program state is called consistent
if and only if there is a multithreaded run containing that
state in its sequence of generated program states. We next
formalize these concepts.

For a given permutation of (relevant) events in R, say
e1e2 . . . e|R|, we can let ek

i denote the k-th event of thread
pi for each 1 ≤ i ≤ n. Then the relevant program state
after the events ek1

1 , ek2

2 , ..., ekn
n is called a relevant global

multithreaded state, or simply a relevant global state or even
just state, and is denoted by Σk1k2...kn . A state Σk1k2...kn

is called consistent if and only if for any 1 ≤ i ≤ n and
any li ≤ ki, it is the case that lj ≤ kj for any 1 ≤ j ≤ n

and any lj such that e
lj
j ⊳ eli

i . Let ΣK0 be the initial global

state, Σ00...0. An important observation is that e1e2 . . . e|R|

is a multithreaded run if and only if it generates a sequence
of global states ΣK0ΣK1 . . . ΣK|R| such that each ΣKr is
consistent and for any two consecutive ΣKr and ΣKr+1 , Kr

and Kr+1 differ in exactly one index, say i, where the i-
th element in Kr+1 is larger by 1 than the i-th element in
Kr. For that reason, we will identify the sequences of states
ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs, and
simply call them runs. We say that Σ leads-to Σ′, written
Σ ; Σ′, when there is some run in which Σ and Σ′ are
consecutive states. The set of all consistent global states
together with the relation ; forms a lattice. The lattice
has n mutually orthogonal axis representing each thread.
For a state Σk1k2...kn , we call k1 + k1 + · · · kn its level. A
path in the lattice is a sequence of consistent global states
on increasing level, where the level increases by 1 between
any two consecutive states in the path. Therefore, a run is
just a path starting with Σ00...0 and ending with Σr1r2...rn ,
where ri is the total number of events of thread i for each
1 ≤ i ≤ n. Therefore, a multithreaded computation can be
seen as a lattice; we call this lattice a computation lattice.

Example 1. Suppose that one wants to monitor some
safety property of the multithreaded program below. The
program involves relevant variables x, y and z:

Initially: x = −1; y = 0; z = 0;

thread T1{
...
x++;
...
y = x + 1;
...
}

thread T2{
...
z = x + 1;
...
x++;
...
}

The ellipses (...) indicate code that is not relevant, i.e.,
that does not access the variables x, y and z. This multi-
threaded program, after appropriate instrumentation, sends
messages to an observer whenever the relevant variables are
updated. A possible execution of the program to be sent to
the observer, described in terms of relevant variable updates,
can be

{x = −1, y = 0, z = 0}, {x = 0}, {z = 1}, {y = 1}, {x = 1}

The first message to observer sends the initial state of the
whole system as a set of variable-value pairs. The second
event is generated when the value of x is incremented by
the first thread. The above execution corresponds to the
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sequence of program states

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x =
−1, y = 0, z = 0. Following the vector clock algorithm, we
can deduce that the observer will receive the multithreaded
computation in Figure 2 which generates the computation
lattice shown in the same figure.

S0,0

x = -1,y = 0,z = 0

S2,2

x = 1,y = 1,z = 1

S2,1

x = 0,y = 1,z = 1

S2,0

x = 0,y = 1,z = 0
S1,1

x = 0,y = 0,z = 1

S1,0

x = 0,y = 0,z = 0

e1:<x=0,T1,(1,0)>

e4:<x=1,T2,(1,2)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e1:<x=0,T1,(1,0)>

e2:<z=1,T2,(1,1)>

e3:<y=1,T1,(2,0)>

e4:<x=1,T2,(1,2)>

T1

T2

S1,2

x = 1,y = 0,z = 1

e4:<x=1,T2,(1,2)>

e3:<y=1,T1,(2,0)>

Figure 2: Computation lattice and three runs.

Notice that the observed multithreaded execution corre-
sponds to just one particular multithreaded run out of the
three possible. We will show that it is often possible that
the observed run does not violate any safety property, but
the run nevertheless shows that there are other possible runs
that are not safe. We will propose an algorithm that will
detect safety violations in any possible run, even though the
violation was not revealed by the particular observed run.
An appealing aspect of our algorithm is that, despite the
fact that there can be a potentially exponential number of
runs (in the maximum width of a level), they can all be an-
alyzed in parallel, by generating and traversing the lattice
on a level-by-level basis; the previous levels are not needed,
so memory can be reused.

3. MULTITHREADED SAFETY ANALYSIS
In this section, we first introduce the past time temporal

logic that we use to express safety properties, then we recall
an algorithm to monitor such properties efficiently against

a single run, and finally we show how this algorithm non-
trivially extends to monitoring multithreaded computations
given as partial orders.

3.1 Safety in Temporal Logics
We use past time Linear Temporal Logic (ptLTL )[16] to

express our safety properties. Our choice of past time linear
temporal logic is motivated by two considerations:

1. It is powerful enough to express safety properties of
concurrent systems;

2. The monitors for a safety formula written in ptLTL are
very efficient; they perform linearly in the size of the
formula in the worst case [12].

Now we briefly introduce the basic notions of ptLTL , and
describe some new operators that are particularly useful for
runtime monitoring. The syntax of ptLTL is given as follows:

F ::= true | false | a ∈ A | ¬F | F op F Propositional ops
⊙F | ♦· F | ⊡F | FSsF | FSwF Standard operators
↑F | ↓F | [F, F )s | [F, F )w Monitoring ops

where op are the standard binary operators, namely ∧,
∨, →, ↔, and ⊙F should be read as “previously”, ♦· F as
“eventually in the past”, ⊡F as “always in the past”, F1SsF2

as “F1 strong since F2”, F1SwF2 as “F1 weak since F2”, ↑F
as “start F”, ↓F as “end F”, [F1, F2)s as “strong interval
F1, F2”, and [F1, F2)w as “weak interval F1, F2”.

The logic is interpreted on a finite sequence of states or
a run. If ρ = s1s2 . . . sn is a run then we let ρi denote the
prefix run s1s2 . . . si for each 1 ≤ i ≤ n. The semantics of
the different operators is given in Table 1.

The monitoring operators ↑, ↓, [, )s, and [, )w were intro-
duced in [12, 15]. These operators have been found to be
very intuitive and useful in specifying properties for runtime
monitoring. Informally, ↑F is true if and only if F starts to
be true in the current state, ↓F is true if and only if F ends
being true in the current state, and [F1, F2)s is true if and
only if F2 was never true since the last time F1 was observed
to be true, including the state when F1 was true; the interval
operator has a strong and a weak version. For example, if
boot and down are predicates on the state of a web server to
be monitored, say for the last 24 hours, then [boot, down)s is
a property stating that the server was rebooted recently and
the since then it was not down, while [boot, down)w say that
server was not unexpectedly down recently, meaning that
it was either not down at all recently or it was rebooted
recently and since then it was not down.

In runtime monitoring, we start the process of monitoring
from the point the first event is generated and it continues
as long as the events are generated. Thus given a ptLTL
formula F we check whether ρi |= F for all 1 ≤ i ≤ n, where
ρ = s1s2 . . . sn is a finite run constructed from the events.

3.2 Checking Safety Against a Single Run
We describe an algorithm for monitoring the multi-

threaded execution or the observed run of a multithreaded
computation, which is just one path in the computation lat-
tice, and illustrate it through an example. This algorithm is
a modified version of the algorithm presented in [12]. The
algorithm computes the boolean value of the formula to be
monitored, by recursively evaluating the boolean value of
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ρ |= true is true for all ρ,
ρ |= a iff a holds in the state sn,
ρ |= ¬F iff ρ 2 F ,
ρ |= F1 op F2 iff ρ |= F1 and/or/implies/iff ρ |= F2, when op is ∧/ ∨ /→ /↔,
ρ |= ⊙F iff ρ′ |= F , where ρ′ = ρn−1 if n > 1 and ρ′ = ρ if n = 1,
ρ |= ♦· F iff ρi |= F for some 1 ≤ i ≤ n,
ρ |= ⊡F iff ρi |= F for all 1 ≤ i ≤ n,
ρ |= F1SsF2 iff ρj |= F2 for some 1 ≤ j ≤ n and ρi |= F1 for all 1 ≤ i ≤ n,
ρ |= F1SwF2 iff ρ |= F1SsF2 or ρ |= ⊡F1,
ρ |= ↑F iff ρ |= F and it is not the case that ρ |= ⊙F ,
ρ |= ↓F iff ρ |= ⊙F and it is not the case that ρ |= F ,
ρ |= [F1, F2)s iff ρj |= F1 for some 1 ≤ j ≤ n and ρi 2 F2 for all j ≤ i ≤ n,
ρ |= [F1, F2)w iff [F1, F2)s or ρ |= ⊡¬F2,

Table 1: Semantics of ptLTL

each of its subformulae in the current state. In the process
it also uses the boolean value of certain subformulae eval-
uated in the previous state. Next we define this recursive
function eval. The recursive nature of the temporal oper-
ators in ptLTL enables us to define the boolean value of a
formula in the current state in terms of its boolean value in
the previous state and the boolean value of its subformulae
in the current state. For example we can define:

ρ |= ♦· F iff ρ |= F or (n > 1 and ρn−1 |= ♦· F )
ρ |= ⊡F iff ρ |= F and (n > 1 implies ρn−1 |= ⊡F )
ρ |= F1SsF2 iff ρ |= F2 or

(n > 1 and ρ |= F1 and ρn−1 |= F1SsF2)
ρ |= F1SwF2 iff ρ |= F2 or

(ρ |= F1 and (n > 1 and ρn−1 |= F1SwF2))
ρ |= [F1, F2)s iff ρ 2 F2 and

(ρ |= F1 or (n > 1 and ρn−1 |= [F1, F2)s))
ρ |= [F1, F2)w iff ρ 2 F2 and

(ρ |= F1 or (n > 1 implies ρn−1 |= [F1, F2)w))

These definitions correspond to the code for the cases of
the operators ♦· , ⊡, Ss, Sw, [, )s, and [, )w in the function
eval. The function op(f) returns the operator of the formula
f , binary(op(f)) returns true if op(f) is binary, unary(op(f))
returns true if op(f) is true, left(f) returns the left subfor-
mula of f , right(f) returns the right subformula of f , and
subformula(f) returns the subformula of f .

boolean

eval(Formula f, State s,array now,array pre, int index){

if binary(op(f)) then{

lval ← eval(left(f), now, pre, index);

rval ← eval(right(f), now, pre, index); }

else if unary(op(f)) then

val ← eval(subformula(f), now, pre, index);

case(op(f)) of{

p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss,Sw : now[++index]← (pre[index] and lval) or rval;

return (pre[index] and lval) or rval;

[, )s, [, )w :

now[++index]← (not rval) and (pre[index] or lval);

return (not rval) and (pre[index] or lval);

↑ : now[++index]← val;

return (not pre[index]) and val;

↓ : now[++index]← val;

return pre[index] and (not val);

⊡ : now[++index]← pre[index]and val; return now[index];

♦· : now[++index]← pre[index] or val; return now[index];

⊙ : now[++index]← val; return pre[index];

}

}

Here, the pre array passed as an argument contains the
boolean values of all subformulae in the previous state, that
will be required in the current state. While the now array,
after the evaluation of eval function, will contain the boolean
values of all subformulae in the current state that will be
required in the next state. Note, here the now array is
passed as reference, and its value is set in the function eval.
The function eval, however, cannot be used to evaluate the
boolean value of a formula for the first state in a run, as
the recursion handles the case n = 1 in a different way. We
define the function init to handle this special case as follows:

boolean init(Formula f,State s,array now, int index){

if binary(op(f)) then{

lval← init(left(f), now, index);

rval← eval(right(f), now, index); }

else if unary(op(f)) then

val ← init(subformula(f), now, index);

case(op(f)) of{

p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss : now[++index]← rval; return rval;

Sw : now[++index]← lval or rval; return lval or rval;

[, )s : now[++index]← (not rval) and lval;

return (not rval) and lval;

[, )w : now[++index]← (not rval); return (not rval);

↑, ↓ : now[++index]← val; return false;

⊡, ♦· ,⊙ : now[++index]← val; return val;

}

}

For a given formula f , we define the function monitor, that
at each iteration, consumes an event in the run, generates
the next state from that event, and evaluates the formula
for the state generated:

monitor(Formula f, Run r = e1e2 . . . en){

State state← {}; array now, pre;

state← update(state, e1);

val ← init(f, state, now, 0);
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if (not val) then output(‘property violated’);

for i = 2 to n do{

pre← now;

state← update(state, ei);

val ← eval(f, state, now, pre,0);

if (not val) then output(‘property violated’);

}

}

In the initialization phase, the state variable is created
from the event e1. The now array is then calculated by
calling the function init on the current state. After the cal-
culation the result of init is checked for falsity, and an error
message is issued if the result is false. Otherwise, the main
loop is started. The main loop goes through the run, start-
ing from the second event. At each iteration, now is copied
to pre, the current state is generated by consuming an event
from the run, the formula f is evaluated in the current state
using the function eval, the result of evaluation is tested for
falsity and an error message is generated if the result is false.

The time complexity of this algorithm is Θ(mn), where m
is the size of the original formula and n is the length of the
run. However, memory required by the algorithm2 is 2m′,
m′ being the number of temporal and monitor operators in
the formula.

We now go back to the Example 1. Suppose that
one want to monitor the safety property (x > 0) →
[(y = 0), y > z)s on that program. The formula states that
“if (x > 0), then (y = 0) has been true in the past, and since
then (y > z) was always false.”

For the possible execution or the observed run of the pro-
gram mentioned in Section 2, we have the following sequence
of global states,

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x =
−1, y = 0, z = 0. The formula is satisfied in all the states
of the sequence and so we say that the property specified
by the formula is not violated by the given run. However,
another possible run of the same computation is,

{x = −1, y = 0, z = 0}, {x = 0}, {y = 1}, {z = 1}, {x = 1}

This run corresponds to the sequence of states

(−1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)

The formula is clearly violated in the last state of this se-
quence. This is because, x > 0 in the 5th state. This means
that from 2nd state, in which y = 0, up to 5th state y > z
must be false. However, y > z in the 3rd state. This vio-
lates the formula. Therefore, the monitoring algorithm that
considers only the observed run presented in this subsection
fails to detect this violation. In the next subsection we pro-
pose an algorithm that will detect such a potential bug from
the original successful run.

3.3 Checking Safety Against All Runs
The algorithm, presented in the previous subsection, can

only monitor a single run. As noticed earlier, monitoring one

2Here we assume that the recursive version is properly con-
verted into an iterative algorithm using cps transform.

run may not reveal a bug that might be present in other pos-
sible runs. Our algorithm removes this limitation by moni-
toring all the possible runs of a multithreaded computation.
The major hurdle in monitoring all possible runs is that the
number of possible runs can be exponential in the length of
the computation. We avoid this problem in our algorithm
by traversing the computation lattice level by level. The
events are generated by the algorithm presented in Section
2. The monitoring module consumes these events one by
one, and monitors the safety formula on the computation
lattice constructed from the events. We now describe the
monitoring module in more details.

The monitoring module maintains a queue of events.
Whenever an event arrives from the running multithreaded
program, it enqueues it in the event queue (Q). The module
also maintains a set of global states (CurrentLevel), that are
present in the current level of the lattice. For each event e in
the event queue, it tries to construct a global state from the
set of states in the current level and the event e. If the global
state is created successfully it is added to the set of global
states (NextLevel) for the next level of the lattice. Once a
global state in the current level becomes unnecessary, it is
removed from the set of global states in the current level.
When the set of global states in the current level becomes
empty, we say that the set of global states for the next level
is complete. At that time the module checks the safety for-
mula (by calling monitorAll(NextLevel)) for the set of states
in the next level. If the formula is not violated it marks the
set of global states for the next level as the set of states for
the current level, removes unnecessary events from the event
queue, and restarts the iteration. The pseudocode for the
process is given below:

for each (e ∈ Q){

if ∃s ∈ CurrentLevel s.t. isNextState(s, e) then

NextLevel← addToSet(NextLevel, createState(s, e));

if isUnnecessary(s) then remove(s, CurrentLevel);

if isEmpty(CurrentLevel) then{

monitorAll(NextLevel);

CurrentLevel← NextLevel; NextLevel← {};

Q← removeUnnecessaryEvents(CurrentLevel,Q);

}

}

Every global state s contains the value of all relevant
shared variables in the program, a n-dimensional vector
clock VC(s) to represent the latest events from each thread
that resulted in that global state, and a vector of boolean
values called flags. Each component of flags is initially set
to false. Here the predicate isNextState(s,e), checks if the
event e can convert the state s to a state s′ in the next level
of the lattice. The pseudocode for the predicate is given
below:

boolean isNextState(s, e){

i← threadId(e);

if V C(s)[i] + 1 = V C(e)[i] then{

flags(s)[i] = true;

if (∀ 1 ≤ j ≤ n, j 6= i) V C(s)[j] ≥ V C(e)[j] then

return true; else return false; }

else return false;

}

where n is the number of threads, threadId(e) returns the
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index of the thread that generated the event e, VC(s) re-
turns the vector clock of global state s, VC(e) returns the
vector clock of event e, and flags(s) returns the vector flags
associated with s. Note, here flags(s)[i] is set to true if
V C(s)[i] + 1 = V C(e)[i]. This means that e is the only
event from thread i that can possibly take state s to a state
s′ in the next level. When all the components of the vector
flags(s) become true, we say that the state s is unnecessary.
Thus the function isUnnecessary(s) checks if (∀ 1 ≤ i ≤ n)
flags(s)[i] = true, where n is the number of threads.

The function createState(s,e) creates a new global state s′,
where s′ is a possible global state that can result from s after
the event e. For the purpose of monitoring we maintain,
with every global state, a set of pre arrays called PreSet,
and a set of now arrays called NowSet. In the function
createState we set the PreSet of s′ with the NowSet of s.
The pseudocode for createState is as follows:

State createState(s, e){

s′ ← new copy of s;

j ← threadId(e); V C(s′)[j]← V C(s)[j] + 1;

for i = 1 to n {flags(s′)[i]← false; }

state(s′)[var(e) ← value(e)];

PreSet(s′)← NowSet(s); return s′;

}

Here state(s’) returns the value of all relevant shared vari-
ables in state s′, var(e) returns the name of the relevant
variable that is written at the time of event e, value(e) is
the value that is written to var(e), and state(s’)[var(e) ←
value(e)] means that in state(s’), var(e) is updated with
value(e).

The function addToSet(NextLevel,s) adds the global state
s to the set NextLevel. If s is already present in NextLevel,
it updates the existing states’ PreSet with the union of the
existing states’ PreSet and the PreSet of s. Two global
states are same if their vector clocks are equal. The function
removeUnnecessaryEvents(CurrentLevel,Q) removes from Q
the events that cannot contribute to the construction of any
state at the next level. To do so, it creates a vector clock
Vmin whose each component is the minimum of the cor-
responding component of the vector clocks of all the global
states in the set CurrentLevel. It then removes all the events
in Q whose vector clocks are less than or equal to Vmin. This
function makes sure that we do not store the unnecessary
events.

The function monitorAll performs the actual monitoring
of the formula. In this function, for each state s in the set
NextLevel, we invoke the function eval (as discussed in the
previous section) on s, for each pre array in the set Pre-
Set. If eval returns false, we issue a ‘property violation’

warning. The now array that resulted from the invocation
of eval is added to the set NowSet of s. The pseudocode for
the function monitorAll is given as follows:

monitorAll(NextLevel){

for each s ∈ NextLevel{

for each pre ∈ PreSet(s){

now ← {}; result← eval(f, s, now, pre, 0);

if not result then output(‘property violated’);

NowSet(s)← NowSet(s) ∪ {now}; }

}

}

If the multithreaded program has synchronization blocks,

then we introduce, during instrumentation, a dummy shared
variable that is read whenever we enter the synchronization
block and is written when we exit the block. This makes
sure that all the events in one execution of the block are
causally dependent on the events in another execution of the
same block, so that the interleaving between them becomes
impossible.

Here the size of each pre array or now array is m′, where
m′ is the number of temporal operators in the formula.
Therefore, the size of the set PreSet or the set NowSet can

be atmost 2m′

. This implies that the memory required for

each state in the lattice is O(2m′

). If the maximum width
of the lattice is w, then the total memory required by the

program is O(w2m′

). The time taken by the algorithm at
each iteration is O(w2m), where m is the size of the formula.
However, if the threads in a program have very few depen-
dency or synchronization points, then the number of valid
permutations of the events can be very large, and there-
fore the width of the lattice can become large. To handle
those situations we can add a parameter to the algorithm
which specifies the maximum width of the lattice. Then, if
the number of states in a level of the lattice becomes larger
than the maximum width, the algorithm can be modified to
consider only the most probable states in the level. We can
specify different heuristics to calculate the most probable
states in a given level of the lattice.

4. IMPLEMENTATION
We have implemented our monitoring algorithm, in a tool

called Java Multi PathExplorer (JMPaX)[1], which has been
designed to monitor multithreaded Java programs. The
current implementation, see Figure 1, is written in Java
and it assumes that all the shared variables of the multi-
threaded program are static variables of type int. The tool
has two main modules, the instrumentation module and the
monitoring module. The instrumentation program, named
instrument, takes a specification file, a port number, and a
list of class files as command line arguments. An example
of such command is

java instrument spec server 7777 A.class B.class

C.class

where the specification file spec contains a list of named
formulae. The specification for the example discussed in
Section 2 looks as follows:

F = (A.x > 0) -> [(A.x = 0),(A.y > A.z))s

where A is the class containing the shared variables x, y
and z as static fields. The program instrument instruments
the classes, provided in the argument, as follows:

i) It adds access and write vector clocks as static fields for
each shared variable;

ii) It adds code to create a vector clock whenever a thread
is created;

iii) For each read and write access of the shared variables in
the class files, it adds codes to update the vector clocks
according to the algorithm mentioned in Section 2;

iv) It adds codes to send messages to the server at the
port number 7777 for all writes of relevant variables.
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To do so, the instrument program extracts the relevant
variables from the specification file.

The instrumentation module uses BCEL [5] Java library
to modify Java class files. We use the BCEL library to
get a better handle for a Java classfile. It enables us to
insert vector clocks as static member fields in a class, that
is otherwise not possible with the tool JTrek [13]. We also
make the update of vector clocks associated with a read or
write, atomic through synchronization. For this we need
to add Java bytecode both before and after the instructions
getstatic and putstatic, that access the shared variables.
This task is easier in BCEL as compared to JTrek.

A translator, which is part of monitoring module, reads
the specification and generates a single Java class file,
named SpecificationImpl.class. The monitoring mod-
ule starts a server to listen events from the instrumented
program, parses them, enqueues them in a queue, executes
translator to generate SpecificationImpl.class, dynam-
ically loads the class SpecificationImpl.class, and starts
monitoring the formulae on the queue of events. It issues a
warning whenever a formula is violated.

One of the test cases that we have implemented is the
landing example described in Section 1. JMPaX was able to
detect violation of a safety property from a single execution
of the program. The safety property that we verified was:

↑landing→ [approved, ↓radio)s.

From a single execution of the code in which the radio
went off after the landing, JMPaX constructed a possible
run in which radio goes off between landing and approval,
and hence it detected the safety violation. This example
shows the power of our runtime verification technique.

5. CONCLUSION AND FUTURE WORK
We have investigated the problem of runtime analysis of

multithreaded systems from a fundamental perspective. We
have developed scalable techniques for extracting relevant
events and their causal dependency from an executing mul-
tithreaded program. We have proposed and implemented
algorithms to check safety properties against the compu-
tation lattice of a multithreaded computation. We have
also briefly presented our prototype tool Java MultiPathEx-
plorer, abbreviated JMPaX, which, at our knowledge, is the
first tool that can predict violations of safety properties ex-
pressed in temporal logics from correct executions of multi-
threaded programs. We have also shown that, despite the
fact that our safety properties can refer to any state in the
past and that there is a potentially exponential number of
multithreaded runs to be analyzed, one does not need to
actually store the previous states; one can analyze all the
multithreaded runs in parallel, by traversing the computa-
tion lattice top down, level-by-level.

Three major contributions have been made. First, we
have nontrivially extended the capabilities of systems like
JPaX and Java Mac, by providing the ability to predict
safety errors from successful executions; we regard safety
prediction as an important trade-off towards avoiding the in-
herent complexity of full-blown theorem proving and model
checking; we are not aware of any other efforts in this di-
rection. Second, we have defined the notion of relevant
causality in multithreaded systems with shared variables

and synchronization points and we have provided a tech-
nique of implementing relevant causality based on vector
clocks. Finally, we have implemented a modular prototype
runtime analysis system, JMPaX; modularity comes from
the fact that its instrumentation module can be used to-
gether with other computation lattice analysis tools, while
its safety computation analysis module can be used in any
event based setting, for example a distributed system. In
fact, we intend to soon extend our work to analyzing ar-
bitrary distributed systems at runtime for not only safety
but also other properties of interest. There are also plans
on developing a predictive analysis runtime environment for
both multithreaded and distributed systems, as well as de-
veloping a GUI for JMPaX that would make it easy to use
and understand by ordinary software engineers. Since our
work is partly sponsored by NASA, we also intend to soon
use JMPaX on real-world NASA-related large applications.
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